URINALYSIS

1. Volume.

2. Color.

3. Odor.

4. Reaction (pH).

Specific gravity.

C. Microscopic Tests

Include:

Cells.

2. Crystals. 3. Casts.

Microorganism
 Parasites.

6.Contamination

B. Biochemical Examination

Includes:

- Proteins.
- 2. Sugers.
- 3. Ketone bodies.
- 4. Bile salts.
- Bile Pigments.
- 6. Blood.

Leukocytes: Indicates infection or inflammation

- Fb/Nurse-Info
- Pyuria: Leukocytes in urine
- Cystitis: Bladder infection
- Pyelonephritis: Kidney infection

Table 1: Urine studies to order and interpret in four common clinical scenarios

Clinical Scenario:	Order:	Calculate:	Interpretation:
Acute Kidney Injury	Urine Sodium OR Urine Urea Urine Creatinine Serum Sodium OR Serum Urea Serum Creatinine	FENa: Na _{urine} x Cr _{serum} Na _{serum} x Cr _{urine} OR FEUrea: Urea _{urine} x Cr _{serum} Urea _{serum} x Cr _{urine}	If FENa <1%, consider pre-renal and other causes If FEUrea <35%, consider pre-renal and other causes
Hyponatremia	Urine Sodium Urine Osmolality Serum Osmolality	Assess RAAS and ADH action	If Na _{urine} is low, RAAS is likely activated If Osm _{urine} is high, ADH is activated
Hypokalemia	Urine Potassium Urine Osmolality Serum Potassium Serum Osmolality	TTKG: K _{urine} x Osm _{serum} K _{serum} x Osm _{urine}	If TTKG is high, consider renal potassium losses
Normal anion gap metabolic acidosis	Urine Sodium Urine Potassium Urine Chloride	UAG: Na _{urine} + K _{urine} - CI _{urine}	If UAG is positive, consider renal causes of acidosis If UAG is negative, consider GI causes of acidosis

Table 1. Urinalysis Results Usual Range Indicators of Infection Accuracy

Positive = pyuria, presence

Low sensitivity,^a high specificity^b

High sensitivity,

low specificity

Any amount

of WBCs in urine

Test

Bacteria

Leukocyte

Source: Reference 1.

esterase

Absent

Absent

WBC	<5	Pyuria: WBC >10	High sensitivity, low specificity
Nitrite	Absent	Positive = presence of bacteria that reduce nitrate	Low sensitivity, high specificity
RBC	<5	Hematuria common in infection	Low sensitivity, high specificity
Epithelial cells	<5	<5 = good urine sample	High epithelial cells indicate contamination with skin flora
pH	4.5-8	pH ↑ if urea-splitting organism (e.g., <i>Proteus</i> mirabilis) is present	Low specificity (there are many other causes of alkaline urine)

Sensitivity = likelihood of positive test when disease is present.
Specificity = likelihood of negative test when disease is not present.

Types of urine sample

Sample type	Sampling	Purpose
Random specimen	No specific time most common, taken anytime of day	Routine screening, chemical & FEME
Morning sample	First urine in the morning, most concentrated	Pregnancy test, microscopic test
Clean catch midstream	Discard first few ml, collect the rest	Culture
24 hours	All the urine passed during the day and night and next day Ist sample is collected.	used for quantitative and qualitative analysis of substances
Postprandial	2 hours after meal	Determine glucose in diabetic monitoring
Supra-pubic aspired	Needle aspiration	Obtaining sterile urine

White Cell Casts

- Usually indicates pyelonephritis (kidney infection)
- Other causes: Interstitial Nephritis (inflammation of the tubules and the spaces between the tubules and the glomeruli.)

Red Cell Casts

- Red blood cells may stick together and form red blood cell casts.
- Indicative of glomerulonephritis, with leakage of RBC's from glomeruli, or severe tubular damage.

Hyaline Casts

 Hyaline casts are composed primarily of a mucoprotein (Tamm-Horsfall protein) secreted by tubule cells.

 Causes: Low flow rate, high salt concentration, and low pH, all of which favor protein denaturation and precipitation of the Tamm-Horsfall protein.

Microscopic Examination Casts

- Casts: hardened cell fragments formed in the distal convoluted tubules and collecting ducts
- Usually pathological
- Can only be seen with microscopic examination

Calcium Oxalate Crystals

- They can occur in urine of any pH.
- Causes: Dietary asparagus and ethylene glycol (antifreeze) intoxication

Uric Acid Crystals

- High uric acid in blood (by-product of purine digestion/high protein diet)
- Associated with gout (arthritis)

Struvite Crystals

 Formation is favored in alkaline urine.

bacteria (eg. Proteus vulgaris) can promote struvite crystals by raising urine pH and increasing free ammonia.

Microscopic Examination Bacteria

- Bacteria are common in urine specimens (from contamination)
- Therefore, microbial organisms found in all but the most scrupulously collected urines should be interpreted in view of clinical symptoms.

Microscopic Examination Epithelial Cells

- Transitional epithelial cells originate from the renal pelvis, ureters, bladder and/or urethra.
- Large sheets of transitional epithelial cells can be seen in bladder cancer.

Transitional epithelial cell

Microscopic Examination Epithelial Cells

 Too many squamous cells: suggest contamination, poor specimen collection

Microscopic Examination Hematuria: RBC in Urine

- RBC's may appear normally shaped, swollen by dilute urine or crenated by concentrated urine.
- The presence of dysmorphic (odd shaped) RBC's in urine suggests a glomerular disease such as a glomerulonephritis.

Microscopic Examination Pyuria: WBC in Urine

- Normal:
 - Men: <2 WBCs per hi power field
 - Women: <5
- WBC generally indicate the presence of an inflammatory process somewhere along the course of the urinary tract

Chemical Analysis

- Sulfates: Normal constituent of urine
 - The urinary sulfate is mainly derived from sulfurcontaining amino acids and is therefore determined by protein intake.
- Phosphates: Normal constituent of urine
 - Important for buffering H⁺ in the collecting duct
- Chlorides: Normal constituent of urine.
 - Major extracellular anion.
 - Its main purpose is to maintain electrical neutrality, mostly as a counter-ion to sodium.
 - It often accompanies sodium losses and excesses.

Blood: Almost always indicates pathology because RBC are too large to pass through glomerulus

- Hematuria: Blood in urine
- Possible causes: Kidney stone, infection, tumor
- Caution: Very common finding in women because of menstruation.

Bilirubin: indicates the presence of liver disease or biliary obstruction

- Bilirubinuria: appearance of bilirubin in urine
 - Yellow foam when sample is shake

Ketones: Intermediate products of fat metabolism

- Urine testing only detects acetoacetic acid, not the other ketones, acetone or beta-hydroxybuteric acid.
- Normal=negative or trace amounts
 - Ketonuria: ketones in urine
- (Ketonuria + glucose in urine may indicate diabetes mellitus)

Glucose: In general the presence of glucose indicates that the filtered load of glucose exceeds the maximal tubular reabsorptive capacity for glucose.

Normal=negative

Glycosuria: Glucose in urine

Protein: Usually proteins are too large to pass through glomerulus (Proteinuria usually represents an abnormality in the glomerular filtration barrier.)

- Trace amounts normal in pregnancy or after eating a lot of protein
- Albuminuria: Albumin in urine

Nitrite: Might indicate bacterial infection with gram-negative rods (like *E. coli*)