

What Is Tumor Lysis Syndrome?

Metabolic derangement produced by rapid tumor breakdown as a consequence of therapy.

Characterized by:

- hyperuricemia (DNA breakdown)
- hyperkalemia (cytosol breakdown)
- hyperphosphatemia (protein breakdown)
- hypocalcemia (2º to hyperphosphatemia)

Which can lead to:

- acute renal failure 2º to urate nephropathy and calcium phosphate
- cardiac dysrhythmias 20 to hyperkalemia and hypocalcemia
- neuromuscular symptoms (cramps and tetany) 20 to hypocalcemia
- sudden death from hyperkalemia or hypocalcemia

Tumor Lysis Syndrome

- Caused by rapid & massive tumor cell lysis and release of intracellular contents (potassium, phosphate and nucleic acids) into the bloodstream that overwhelms the kidney's ability to excrete those products
- Can occur at presentation or more commonly after initiation of chemo for high grade lymphomas (e.g., Burkitt's) and leukemia
- Can also be precipitated by radiation, steroid or antibody therapy
- Risk of renal failure and life-threatening electrolyte disturbances is caused by the breakdown of nucleic acids -> uric acid, which can precipitate in the renal tubules
- Hyperphostatemia with deposition of calcium phosphate in the renal tubules can also cause renal failure

Table 3: Risk factors for developing a tumour lysis syndrome³⁷

Cancer-Related Risk factors

- Large burden of tumour
- Neoplastic infiltration of the bone marrow, liver, spleen, kidneys
- Turnour with high mitotic rate
- Tumour highly chemosensitive
- Haematologic malignancy

Patient-Related Risk Factors

- Pre-existing nephropathy
- Hyperuricemia
- Hypotension
- Dehydration
- Nephrotoxins (drugs, contrast)
- Exogenous potassium or phosphorus intakes

Risk for Tumor Lysis Syndrome by Tumor Type

Burkitt's lymphoma

Frequent cases

- Lymphoblastic lymphoma
- Acute leukemia
- Large cell lymphoma
- Low-grade lymphoma treated with chemotherapy, radiotherapy or steroids Recognized complication but few occurrences
- Breast carcinoma treated with chemotherapy or hormonal therapy
- Small cell lung carcinoma
- Seminoma
- Neuroblastoma
- Low-grade lymphoma treated with interferon

Case reports only

- Merkel's cell carcinoma
- Medulloblastoma
- Adenocarcinoma of the gastrointestinal

Criteria for Classification of Laboratory Tumor Lysis Syndrome

Metabolic Abnormality	Criteria for Classification of Lab TLS			
Hyperuricemia	> 8.0 mg/dl (475.8 μ mol/liter) in adults or above the upper limit of the normal range for age in children			
Hyperphosphatemia	> 4.5 mg/dl (1.5 mmol/liter) in adults or > 6.5 mg/dl (2.1 mmol/liter) in children			
Hyperkalemia	> 6.0 mmol/liter			
Hypocalcemia	Corrected calcium <7.0 mg/dl (1.75 mmol/liter) or ionized calcium <1.12 (0.3 mmol/liter)†			

Two or more metabolic abnormalities must be present during the same 24-hour period within 3 days before the start of therapy or up to 7 days afterward

The corrected calcium level in milligrams per deciliter = measured calcium level in milligrams per deciliter + $0.8 \times (4 - \text{albumin in grams per deciliter})$

Cairo-Bishop definition of laboratory tumor lysis syndrome

- Uric acid: 476 mmol/L (8 mg/dL) or 25% increase from baseline
- Potassium: 6.0 mmol/L (6mEq/L) or 25% increase from baseline
- Phosphorous :2.1 mmol/L (children) or ³1.45 mmol/L (adults) or 25% increase from baseline
- Calcium: 1.75 mmol/L or 25% decrease from baseline

Laboratory TLS Clinical TLS Uric acid: ≥8.0 AKI (defined as creatinine mg/dl >1.5× the upper limit

of normal for patient

Table 1. Cairo-Bishop classification of tumor lysis syndrome in

adults

Potassium: ≥6.0 Cardiac arrhythmia

mEq/dl

Phosphorus: ≥4.6 Seizure, tetany, or other

mg/dl symptomatic hypocalcemia

Calcium: ≤7.0

mg/dl

Patients must meet more than two of four laboratory criteria in the same 24-hour period within 3 days before to 7 days after

Patients must meet more than two of four laboratory criteria in the same 24-hour period within 3 days before to 7 days after chemotherapy initiation. A >25% increase from "baseline" laboratory values is also acceptable (13). Other causes of AKI (e.g., nephrotoxin exposure, obstruction) should be excluded. TLS, tumor lysis syndrome.

Clinical manifestations

- Hyperuricemia: lethargy, nausea, vomiting & renalfailure
- Hyperphosphatemia may precipitate hypocalcemia and cause tissue damaga due to ca.phosphate precipitation in tissues
- Tissue damage may present as pruritic skin or gangrenous skin lesions, arthritis, eye inflammation or as renal failure
- Hypocalcemia can present as tetany, carpopedal spasm, cramps, seizures, alteration in sensorium or as cardiac arrest
- Arf, arrythmias, neuromuscular symptoms duw to hyperkalemia and hypocalcemia may lead to sudden death

Table 2 Prophylactic Management of TLS

- Central venous access and on an oncology or intensive care unit Baseline electrocardiogram
- Rigorous hydration approximately 3 liters/m2/day to maintain urine output of at least 100 ml/m2/day. If necessary, digretics such as forosemide and/or mannitol may be used to
- maintain urine output. Baseline lab values including: LDH, uric acid, sodium, potassium, creatinine, BUN, phosphorus
- and calcium. These labs should be checked every 6 to 8 hours for the first 48 to 72 hours after therapy, and then tapered according to risk. Administer allopurinol 200-300 mg/m2/day or rasburicase 0.20mg/kg/day, intravenously over 30
 - minutes for 3 to 7 days.
 - (Optional) Alkalinization of urine with sodium bicarbonate in IV fluids.

Prevention - Urinary Alkalinization

- Urine alkalinization add NaHCO₃ to IVF
 - Uric acid more soluble at urine pH = 7.0 vs 5.0
 - Goal of urine specific gravity ≤1.015 and pH 7.0-7.5
 - Caution -- hypoxanthine and Ca-PO₄ stones possible if urine pH >7.5
- Fallen out of favor as no demonstrated advantage; may be appropriate for patients with underlying metabolic acidosis

Prevention - Hypouricemic Agents

- Allopurinol a hypoxanthine analog that inhibits XO producing more hypoxanthine and xanthine which are more soluble in acidic urine; takes 2-3 days to be effective
- Urate Oxidase/Rasburicase breaks down uric acid to allantoin which is more soluble in urine; acts within several hours
- UO has significantly reduced the need for rescue dialysis therapy for TLS

Prevention - Allopurinol

- Decrease production of uric acid
 - allopurinol inhibits xanthine oxidase
 - 300 mg/m²/day divided tid PO/IV
 - Dose reduction in renal insufficiency
 - Long-time standard Rx

Allopurinol vs. Rasburicase

Goal: prevention and/or treatment of uric acid nephropathy

- Low risk patients: Allopurinol
 - UA: normal
 - certain tumors (namely nonhematologic malignancies, Hodgkin's lymphoma, chronic myeloid leukemia),
 - Tumor burden: lower (WBC < 50 x 10(9)/L and LDH < 2x normal),
 - Intensity of cytoreductive therapy: Low
 - Intravascular volume: adequate
 - Tumor infiltration of the kidney: absent

- High risk patients: Rasburicase
 - UA: increased
 - certain tumors (eg, Burkitt's lymphoma, lymphoblastic lymphoma, acute lymphoblastic leukemia, and acute myeloid leukemia),
 - Tumor burden: High (WBC > 50 x 10(9)/L and LDH >2x normal),
 - Intensity of cytoreductive therapy: aggressive
 - Intravascular volume: decrease
 - Tumor infiltration of the kidney: present

96-09-27

Management

Metabolic abnormality	Drug category	Drug name	Dose	
Hyperuricemia	Xanthine oxidase inhibitors	Allopurinol	Prophylaxis: 200~600mg/dl	
	Uric acid oxidizers	Rasburicase	5.45-90.2 mg/Rg/d for 5~7	
Hyperkalemia	Intracellular potassium	Sodium bicarbonate	meq/kg IV 50~100meq/L IVF	
	transporters	Insulin + dextrose		
	Exchange resins	Kayexalate	25~50gm Q6h	
Hyperphosphate Phosphate-binding agents		Aluminum hydroxide	10ml Q2h for 12x/day	
Hypocalcemia Mineral		Calcium gluconate; Calcium chloride	10% calcium chloride: K*1: 2~4mg/kg Q6~8h prn K* ↓: 0.5~1gm Q1~3d	

Approach to the Management and Treatment of Tumor Lysis Syndrome

	Decreased urine output(<50ml /hr)	hyperkalemia	Uraemia	hypocalcemia	hyperuricemi a	hyperphosph atemia
Primary intervention	Mannitol challenge	Potassium binding raisin	Diuretic	Cautious replacement	Allopurinol or Rasburicase	Aluminum hydroxide (200–500 mg/kg)
Clinical manifestation	Renal insufficiency or fluid overload	Arrythmia	Pericarditis or platelet dysfunction	Arrythmia or Tetany	Renal insufficiency	Renal insufficiency
Secondary intervention	haemodialysi s	Treat arrythmia	Haemodialysi s	Treat arrythmia	haemodialysi s	haemodialysi s

Summary

- Successful management and treatment of tumor lysis syndrome is highly dependent on the prompt identication of clinical and laboratory characteristics, signs and symptoms of patients at risk.
- Establishment of vascular access and the initiation of prophylactic measures, especially hydration and administration of allopurinol or rasburicase, are vital.
- The early recognition and treatment of metabolic abnormalities usually prevents the severe and lifethreatening complications associated with tumor lysis syndrome.