MANAGEMENT OF PATIENT WITH BURNS

Definition

 Injuries that result from direct contact or exposure to any physical, thermal, chemical, electrical, or radiation source are termed as Burns.

CLASSIFICATION

Etiology

- > Based on Cause
 - o Thermal
 - o Electrical
 - Chemical
 - Radiation
 - Inhalation

Thermal Injuries

- Most common
- · Types: Dry & wet

Contact

- Direct contact with hot object (i.e. pan or iron)
- · Anything that sticks to skin (i.e. tar, grease or foods)

Flame

- Direct contact with flame (dry heat)
- structural fires / clothing catching on fire

► Scalding

- ► Direct contact with hot liquid / vapours (moist heat)
- ▶ Cooking, bathing or car radiator overheating
- ► Single most common injury in the paediatric pt

Electrical Burns

- Usually follows accidental contact with exposed object conducting electricity
 - Electrically powered devices
 - Electrical wiring
 - o Power transmission lines

- Can also result from Lightning
- Damage depends on intensity of current

Low-tension injuries(<1000 V)

- o Low energy burns → Minimal damage to subcutaneous tissue
- Entry & Exit points fingers → small deep burns
- AC → Tetany within muscles, cardiac arrest due to interference with normal cardiac pacing

High-tension injuries(>1000V)

 Earthed high tension lines → Arc over the patient → Flash burn

Severity depends upon:

- what tissue current passes through (Low voltage/ High voltage)
- width or extent of the current pathway
- o AC or DC
- oduration of current contact

- Lightning
 - OHIGH VOLTAGE!!!
 - o Injury may result from
 - Direct Strike
 - · Side Flash

Chemical Burns

- · Usually associated with industrial exposure
- · Accidental mishandling of household cleaners

Degree of tissue damage determined by

- Chemical nature of the agent
- Concentration of the agent
- Duration of skin contact

Acids- Eg- Formic acid, sulphuric acid Alkalis - Eg. Lime, potassium hydroxide

Radiation Exposure

Waves or particles of energy that are emitted from radioactive sources

Alpha radiation

- ✓ Large, travel a short distance, minimal penetrating ability
- ✓ Can harm internal organs if inhaled, ingested or absorbed

Beta radiation

- Small, more energy, more penetrating ability
- Usually enter through damaged skin, ingestion or inhalation

INHALATION

Smoke and inhalation injury

carbon monoxide poisoning inhalation injury above glottis inhalation injury below glottis

According Depth of burn

Superficial Partial-Thickness (First Degree burn)

cause-Sunburn

Low-intensity flash

Skin involvement- Epidermis

Symptoms- Reddened, Tingling, Pain that is soothed by cooling

Deep Partial-Thickness (Second Degree)

Cause

- Scalds
- Flash flame
- Contact burns
- · chemical

Skin involvement- Epidermis, upper dermis, portion of deeper dermis

Manifestations- Blisters that are red, shiny. Severe pain caused by nerve injury mild to moderate edema

Recovery in 2 to 4 weeks, some scarring and depigmentation contractures.

Full-Thickness (Third Degree)

Cause-

- Flame
- Prolonged exposure to
- · hot liquids
- Electric current
- Chemical

Skin involvement- Epidermis, entire dermis, and sometimes subcutaneous tissue; may involve connective tissue, muscle,

and bone

Manifestations- Dry; pale white, Leathery, visible thrombosed blood vessels

 Pain free, all skin elements and local nerve endings are destroyed, surgical intervention required for healing

PALM METHOD

In patients with scattered burns, a method to estimate the percentage

of burn is the palm method. The size of the patient's palm is

approximately 1% of TBSA.

Location of burn

- Burns to face, neck ,chest and back may inhibit respiratory function due to mechanical obstruction secondary to edema, eschar formation
- Burns to the ear, nose are susceptible to infection because of poor blood supply
- Burns to buttocks, genitalia are susceptible to infection because of contamination
- Burns on extremities cause circulatory compromise and neurologic impairment.

Zones of burn injury

Zones of burn injury

- The inner zone (known as the zone of coagulation, where cellular death occurs) sustains the most damage
 - Necrotic area with cellular disruption
 - o Irreversible tissue damage
- The middle area, or zone of stasis, has a compromised blood supply, inflammation, and tissue injury, Can survive or go on to coagulative necrosis depending on wound environment
- The outer zone—the zone of hyperemia—sustains the least damage

Pathophysiology

MANAGEMENT

Phases of burn management

- 1. emergent phase/resuscitative phase
- 2.Acute phase/ wound healing phase
- 3. Rehabilitative phase/Restorative phase

PRE HOSPITAL MANAGEMENT

- Rescuer to avoid injuring himself
- Remove patient from source of injury
- Stop burn process
- Burning clothing; jewelry, watches, belts to be removed
- Pour ample water on burnt area (not ice/ ice packs skin injury)
 - & hypothermia)

Evan's formula

> Requirement for first 24 hrs

➤ Colloids : 1ml/kg/% burn

➤ Saline : 1ml/kg/% burn

>D5 : 2000ml

> Requirement for second 24 hrs

> 1/2 of first 24 hrs

Wound care

- Wound care should be delayed until a patent airway, adequate circulation and adequate fluid replacement have been established.
- 2 types of wound treatment used to control infection
- open method
- multiple dressing change method

-

Closed method

- Advantages
 - · Less wound desiccation
 - · Decreased heat loss
 - Decreased cross contamination
 - Debriding effect
 - · More comfortable

- Disadvantages
 - Time consuming
 - Expensive
 - Increase chances of infection if not changed frequently