Electrocardiography

- Electrocardiography: Technique of recording ("gram") of the electrical activity ("electro") generated by the cells of the heart ("cardio") that reaches the body surface.
- Electrocardiogram is the graph obtained by the above technique
- Electrocardiograph is the machine that records the ECG and consists of a sophisticated galvanometer that detects and records changes in electromagnetic potential between a positive and a negative pole.

ECG - Description

- Rhythm
- · Rate
- QRS axis
- · P Wave
- · P-R Interval

- QRS complex
- ST Segment
- T Wave
- · U Wave
- Q-T Interval

Basic Deflections and Intervals

- P wave Atrial depolarization
- QRS Ventricular depolarization
- T wave Ventricular repolarization
- U wave Repolarization of purkinje fibres

Standardisation

- Normal 1 mV = 10mm, the signal will have clear and perfect right angles to each other
- Over damping happens when the pressure of the writing stylus is too firm resulting in rounding at the edges, and diminished deflections amplitude.
- Under damping happens when the writing stimulus is too loose resulting in sharp spikes at the corners and increased deflections amplitude.

Electrode Placement

- Right arm, Left arm, Left leg
- Right leg for earthing
- Precordial leads V 1 to V 6
 - V1 Right 4th ICS parasternal
 - V2 Left 4th ICS parasternal
 - V3 Midway between V2 and V4
 - V4 Left 5th ICS MCL
 - V5 Left Ant axillary line, same level as V4
 - V6 Left mid axillary line, same level as V4

Conventionally 12 leads

Frontal plane leads

Bipolar limb leads - I, II, III

Modified unipolar leads - aVr, aVl, aVf

Horizontal plane leads

Unipolar precordial leads - V1 to V6

- These changes are recorded on a graph paper as a plot of voltage on the vertical axis against time on the horizontal axis
- Each lead provides a view of the electrical activity as seen from its particular position on the body surface. A combination of leads allows us to see the electrical activity from various viewpoints.

The QRS Axis

Normal: -30 to +90
Right axis deviation: +90 to +180
Left axis deviation: -30 to -90
Northwest axis: -90 to -180

- Calibration 1 mV = 10mm can be reduced to 5mm when QRS complexes are big
- ECG paper speed 25mm/s, fastest speed for clear depiction of wave form morphology
- Reduced electrical artifacts external or internal
- Supine position while recording ECG

Practical Points for Recording ECG

- Electrodes should be selected for maximum adhesiveness and minimum discomfort, electrical noise and skin electrode impedence.
- Effective contact between electrode and skin essential
- Skin should be clean only with a dry wipe to prevent

 Base line wander when shift occurs gradually

 Shifting baseline when shifting occurs abruptly

ECG RULES

Professor Chamberlains 10 rules of normal:-

Normal duration of PR interval is 0.12-0.20 s (three to five small squares)

PR interval should be 120 to 200 milliseconds or 3 to 5 little squares

The width of the QRS complex should not exceed 110 ms, less than 3 little squares

The QRS complex should be dominantly upright in leads I and II

QRS and T waves tend to have the same general direction in the limb leads

The R wave must grow from V1 to at least V4
The S wave must grow from V1 to at least V3
and disappear in V6

The ST segment should start isoelectric except in V1 and V2 where it may be elevated

The P waves should be upright in I, II, and V2 to V6

There should be no Q wave or only a small q less than 0.04 seconds in width in I, II, V2 to V6

The T wave must be upright in I, II, V2 to V6

QRS complex (ventricular depolarization)

- * Normal:
- * width : < 2.5 mm
- * height : I + II + III > 15 mm
- * supraventricular rhythm
- * dominant S in V1
- * dominant R in V6

- * Broad Complex :
- * width : > 2.5 mm
- * in ventricular rhythm * incomplete BBB : 2.5 - 3 mm
- * complete BBB : > 3 mm

- * High voltage :
- * S in V1 + R in V6 > 35 mm
- * in LVH

- * Low voltage :
- * height < 5 mm in limb leads
- * height < 10 mm in chest leads
- * in damping state as COPD & effusion

- * Dominant R in V1:
- * dominant R in V1
- * deep S in V6
- * in RVH

- * MarroW pattern:
- * terminal large R in V1 (R rsR qR)
- * W shape in V6
- * in RBBB

- * WiliaM pattern :
- * terminal large S in V1 (QS rS)
- * M shape in V6
- * in LBBB

* Normal: * from end of S to start of T * slight concave upward * isoelectric * J point is junction between QRS & ST

* Elevation : ' > 1 mm in limb leads after J

- > 2 mm in chest leads after J in STMI pericarditis LVH LBBB
- reciprocal depression if MI

VA

Depression : 1 mm in limb l

- * > 1 mm in limb leads after J
 * > 2 mm in chest leads after J
 - in ischemia posterior MI RVH RBBB
- * I wave (Osborn wave) :
- * J * + ' * in
 - * J wave (Osborn wave) :
 * + ve deflection at J point

reciprocal elevation if MI

* in hypothermia - hypercalcemia -CNS insults (injury - hemorrhage)

QT interval (all ventricular action) * Normal:

* from start of Q to end of T best in II - V5 - V6

* length inversly with HR lenght: 9 - 12 mm

* Long:

> 12 mm

* risk of torsades de pointes

in congenital cases - antiarrhythmics -

hypokalemia - hypocalcemia - ischemia

* Short:

* < 9 mm

in congenital - digitalis - hypercalcemia

