CALCIUM CHANNEL BLOCKERS

MEDICAL STUDENT: MOHAMMAD TAILAKH.

4TH YEAR AT JU.

CCB

- It has been known since the late 1800s that transmembrane calcium influx is necessary for the contraction of smooth and cardiac muscle. The discovery of a calcium channel in cardiac muscle was followed by the finding of several different types of calcium channels in different tissues.
- Although the blockers currently available for clinical use in cardiovascular conditions are exclusively L-type calcium channel blockers.

Туре	Channel Name	Where Found	Properties of the Calcium Current	Blocked By
Ĺ	Ca _v I.1-Ca _v 13	Cardiac, skeletal, smooth muscle, neurons (Ca,1.4 is found in retina), endocrine cells, bone	Long, large, high threshold	Verapamil, DHPs, Cd ²⁺ , -aga-IIIA
Т	Ca _v 3.1–Ca _v 3.3	Heart, neurons	Short, small, low threshold	sFTX, flunarizine, mibefradil
N	Ca _v 22	Neurons, sperm ²	Short, high threshold	Ziconotide, gabapen tin, 4 -CTX- GVIA, -aga-IIIA, Cd ²⁺
P/Q	Ca _v 2.1	Neurons	Long, high threshold	-CTX-MVIIC, -

CCB

- · They divided into three chemical classes:
- · a. Diphenylalkylamines, Varapamil.
- · b. Benzothiazepines, Diltiazem
- · c. Dihydropyridines, Nifedipine

MECHANISM OF ACTION

- Calcium enters muscle cell through special voltage sensitive calcium channel.
- Normally, L-Type of channels admit Ca+ and causes depolarization excitationcontraction coupling through phosphorylation of myosin light chain – contraction of vascular smooth muscle – elevation of BP CCBs block L-Type
- These agents exert their effect by antagonists ble for the inward movement of calcium by binding to the L-type channels in the heart and peripheral vasculature

ORGAN SYSTEM EFFECTS

- 1. Smooth muscle: dependent on transmembrane calcium influx for normal resting tone and contractile responses.
- Vascular smooth muscles (most sensitive) relaxed by the calcium channel blockers.
- reduction in peripheral vascular resistance.
- · Reduction of coronary artery spasm .

2. CARDIAC MUSCLE

- Normally: highly dependent on calcium influx during each action potential for normal function(plateau).
- Impulse generation in the sinoatrial node and conduction in the atrioventricular node.

radius and a contractility decrease CO, reduce axvien requirement in with

The plateau phase of the cardiac muscle action potential — provides a longer absolute refractory period — thus disallowing cardiac muscle action potentials from coming to close together — thus disallowing cardiac muscle tetany.

3. SKELETAL MUSCLE

Skeletal muscle is not depressed by the calcium channel blockers because it
uses intracellular pools of calcium to support excitation-contraction coupling
and does not require as much transmembrane calcium influx.

CLINICAL EFFECTS

- decrease myocardial contractile force.
- reduces myocardial oxygen requirements.
- Decrease peripheral resistance.
- Decreased heart rate with the use of verapamil or diltiazem causes a further decrease in myocardial oxygen demand.

Calcium Channel Blockers

	NIFEDIPINE	DILTIAZEM	VERAPAMIL
coronary arteries dilation	:+.+.	++	++
peripheral arteries dilation	++++	++	+++
negative inotropic	4 5	++	+++
slowing AV cond	↔	+++	++++
heart rate	$\uparrow \leftrightarrow$	↓↔	↓↔
↓ blood pressure	++++	++	***
depression of SA	↔	++	++
increase in cardiac output	++	*	↔

INDICATIONS

- Angina.
- Hypertension.
- Raynaud's phenomenon. (Nifedipine is the mainstay of medical treatment).
- Supraventricular tachycardias, including atrial fibrillation.
- Ischaemic neurological deficit after subarachnoid haemorrhage.
- Delay of preterm labour(prevent premature labour has been with nifedipine)
- Prophylaxis for cluster headache.

USAGE

- Verapamil and Diltiazem are used in arrhythmias because they have an effect on the heart. They both are not great antihypertensive drugs
- because they have negative inotropic and chronotropic effects,
- however are used in patients who have palpitations/arrhythmias and suffer from HTN since they can reduce heart rate and blood pressure simultaneously.
- Dihydropyridines: depend on JNC-8, found in first line theraby espically in black population have a high efficacy of 40 mmHg, regarding that the highest reduction in blood pressure an orally taken anti-hypertensive drug can cause is 40 mmHg.

ADVERSE EFFECTS

- Common adverse effects
- These can be predicted from the type of CCB and mode of action, as already illustrated.
 Examples include:
- Myocardial effects
- Hypotension
- · Heart failure
- Conduction effects
- Heart block
- Arrhythmias

ADVERSE EFFECTS

- · Vascular smooth muscle
- Flushing
- Oedema
- Headaches
- Rashes
- Other effects
- Constipation
- Rashes
- Gynaecomastia
- Photosensitivit

ADVERSE EFFECTS

drug	Effect on heart rate	Adverse effect
Nifedipine	1	Headache, flushing, ankle swelling
Amlodipine	1	Ankle swelling, Gingival hyperplasia
Nimodipine	±	Flushing, headache
Diltiazem	±	Generally mild
Verapamil	Ţ	Constipation, marked negative inotropic action

CAUTIONS AND CONTRA-INDICATIONS

- Again, these can be predicted from the type of CCB and mode of action.
 Individual drug monographs need to be reviewed. Some examples include:
- Cardiovascular: shock, unstable angina, significant aortic stenosis, bradycardia, heart failure, etc.
- Avoidance of grapefruit juice with felodipine, lacidipine, lercanidipine, nicardipine, nifedipine, nimodipine and verapamil. This may affect metabolism.
- Sudden withdrawal of CCBs may exacerbate angina.
- These are best considered under each individual drug.