MANAGEMENT OF PATIENT WITH BURNS

Definition

 Injuries that result from direct contact or exposure to any physical, thermal, chemical, electrical, or radiation source are termed as Burns.

CLASSIFICATION

Based on Cause
 Thermal

o Electrical

Chemical

Radiation

Inhalation

Thermal Injuries

- Most common
- · Types : Dry & wet

Contact

- Direct contact with hot object (i.e. pan or iron)
- Anything that sticks to skin (i.e. tar, grease or foods)

Flame

- o Direct contact with flame (dry heat)
- structural fires / clothing catching on fire

▶ Scalding

- Direct contact with hot liquid / vapours (moist heat)
- Cooking, bathing or car radiator overheating
- Single most common injury in the paediatric pt

Electrical Burns

- Usually follows accidental contact with exposed object conducting electricity
 - Electrically powered devices
 - Electrical wiring
 - Power transmission lines
- Can also result from Lightning
- Damage depends on intensity of current

Low-tension injuries(<1000 V)

- Low energy burns → Minimal damage to subcutaneous tissue
- o Entry & Exit points fingers → small deep burns
- AC → Tetany within muscles, cardiac arrest due to interference with normal cardiac pacing

High-tension injuries(>1000V)

 Earthed high tension lines → Arc over the patient → Flash burn

· Severity depends upon:

what tissue current passes through (Low voltage/ High voltage)

- o width or extent of the current pathway
- AC or DC

o duration of current contact

Lightning HIGH VOLTAGE!!! Injury may result from Direct Strike Side Flash

Chemical Burns

- · Usually associated with industrial exposure
- Accidental mishandling of household cleaners

Degree of tissue damage determined by

- Chemical nature of the agent
- Concentration of the agent
- Duration of skin contact

Acids- Eg- Formic acid, sulphuric acid Alkalis - Eg. Lime, potassium hydroxide

Radiation Exposure

- Waves or particles of energy that are emitted from radioactive sources
- <u>Alpha radiation</u>
 - Large, travel a short distance, minimal penetrating ability
 - Can harm internal organs if <u>inhaled</u>, <u>ingested</u> or absorbed
- Beta radiation
 - Small, more energy, more penetrating ability
 - ✓ Usually enter through damaged skin, ingestion or inhalation

INHALATION

Smoke and inhalation injury

carbon monoxide poisoning inhalation injury above glottis inhalation injury below glottis

According Depth of burn

- Superficial Partial-Thickness (First Degree burn) cause-Sunburn
 - Low-intensity flash
- Skin involvement- Epidermis

Symptoms- Reddened, Tingling, Pain that is soothed by cooling

Deep Partial-Thickness (Second Degree)

Cause

- Scalds
- Flash flame
- Contact burns
- chemical

Skin involvement- Epidermis, upper dermis, portion of deeper dermis

Manifestations- Blisters that are red, shiny. Severe pain caused by nerve injury ,mild to moderate edema

Recovery in 2 to 4 weeks, some scarring and depigmentation contractures

Full-Thickness (Third Degree)

Cause-

- Flame
- Prolonged exposure to
- hot liquids
- Electric current
- Chemical

Skin involvement- Epidermis, entire dermis, and sometimes subcutaneous tissue; may involve connective tissue, muscle,

and bone

Manifestations- Dry; pale white, Leathery, visible thrombosed

blood vessels

 Pain free, all skin elements and local nerve endings are destroyed, surgical intervention required for healing

PALM METHOD

- In patients with scattered burns, a method to estimate the percentage
- of burn is the palm method. The size of the patient's palm is approximately 1% of TBSA.

Location of burn

- Burns to face, neck ,chest and back may inhibit respiratory function due to mechanical obstruction secondary to edema, eschar formation
- Burns to the ear, nose are susceptible to infection because of poor blood supply
- Burns to buttocks, genitalia are susceptible to infection because of contamination
- Burns on extremities cause circulatory compromise and neurologic impairment.

Zones of burn injury

.

Zones of burn injury

- The inner zone (known as the zone of coagulation, where cellular death occurs) sustains the most damage
 - Necrotic area with cellular disruption

o Irreversible tissue damage

- The middle area, or zone of stasis, has a compromised blood supply, inflammation, and tissue injury, Can survive or go on to coagulative necrosis depending on wound environment
- The outer zone—the zone of hyperemia—sustains the least damage

MANAGEMENT

Phases of burn management

- 1. emergent phase/resuscitative phase
- 2.Acute phase/ wound healing phase
- 3. Rehabilitative phase/Restorative phase

PRE HOSPITAL MANAGEMENT

- Rescuer to avoid injuring himself
- Remove patient from source of injury
- Stop burn process
- · Burning clothing; jewelry, watches, belts to be removed
- Pour ample water on burnt area (not ice/ ice packs skin injury & hypothermia)

Requirement for first 24 hrs
 Colloids : 1ml/kg/% burn
 Saline : 1ml/kg/% burn
 D5 : 2000ml

Requirement for second 24 hrs > 1/2 of first 24 hrs

Wound care

- Wound care should be delayed until a patent airway, adequate circulation and adequate fluid replacement have been established.
- 2 types of wound treatment used to control infection
- 1. open method
- 2. multiple dressing change method

Closed method

- Advantages
 - Less wound desiccation
 - Decreased heat loss
 - Decreased cross contamination ,
 - Debriding effect
 - More comfortable

- Disadvantages
 - Time consuming
 - Expensive
 - · Increase chances of infection if not changed frequently